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Abstract. The differential and total cross-sections for the scattering of muonic, pionic, kaonic and antipro-
tonic hydrogen in excited states from atomic hydrogen have been calculated for the purpose of atomic
cascade calculations. The scattering problem is treated in a fully quantum mechanical framework which
takes the energy shifts and, in the case of the hadronic atoms, the widths of the ns states into account.
The validity of semiclassical approximations is critically examined.

PACS. 34.50.-s Scattering of atoms and molecules – 36.10.-k Exotic atoms and molecules
(containing mesons, muons, and other unusual particles)

1 Introduction

Exotic hydrogen-like atoms are formed in highly ex-
cited states, when negative particles (µ−, π−,K−...) are
stopped in hydrogen. The deexcitation of exotic atoms
proceeds via many intermediate states until the ground
state is reached or a nuclear reaction takes place. De-
spite a long history of theoretical and experimental stud-
ies (see [1–4] and references therein) the kinetics of this
atomic cascade is not yet fully understood. The current
generation of experiments with exotic hydrogen-like atoms
addresses a number of fundamental problems using pre-
cision spectroscopy methods, the success of which relies
crucially on a better knowledge of the atomic cascade.

In the case of the laser spectroscopy of the Lamb shift
in muonic hydrogen [5], the goal is to determine the proton
charge radius with an accuracy of 10−3 from the energy
splitting between the 2s and 2p states. This will remove
the major theoretical obstacle in the precision calculations
of the hydrogen Lamb shift, thus extending the limits of
the most stringent test of QED in a bound system. The
feasibility of this experiment depends on the population
and the lifetime of the metastable 2s state of µ−p, and a
reliable model of the cascade kinetics is essential for this
issue. The experiment on precision spectroscopy of pionic
hydrogen [6] is expected to determine the πN scattering
length with a precision better than 1% by measuring the
nuclear shifts and widths of the K X-ray lines. At this level
of precision, the Doppler broadening corrections to the line
width become important, and they must be reliably calcu-
lated from a cascade model. In the precision spectroscopy
of antiprotonic hydrogen [7], the Doppler broadening of
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the L X-ray lines must be taken into account when the 2p
nuclear widths are determined from the X-ray line profile.

The kinetics of atomic cascade is described by the mas-
ter equation involving all significant processes with the ex-
otic atoms (cascade mechanisms). The deexcitation mech-
anisms include radiative, Auger, and Coulomb processes
where the transition energy between states with different
principal quantum number n is carried away mainly by
photon, electron, and the recoiling particles (including the
exotic atom itself), correspondingly. While the deexcita-
tion processes are obviously essential for the atomic cas-
cade, the role of the collisional processes preserving the
principal quantum number n is not less important than
that of the deexcitation. The Stark transitions nl → nl′

(l′ 6= l), affect the population of the nl sublevels. Together
with the elastic scattering nl→ nl they decelerate the ex-
otic atoms thus influencing their energy distribution dur-
ing the cascade. In hadronic atoms, the role of the Stark
mixing is especially important as it results in a strong
absorption during the cascade by feeding the ns states
which have absorption widths much larger than the states
with l > 0.

In the literature starting with the paper of Leon
and Bethe [1], Stark mixing has often been treated
in the semiclassical straight-line-trajectory approxima-
tion [1,2,8–11]. Due to the broad use of this relatively sim-
ple model it is desirable to know its accuracy in compari-
son with more advanced and realistic quantum mechanical
calculations. By introducing phenomenological tuning pa-
rameters in the Stark mixing rates [2–4] one is able to
reproduce the measured X-ray yields and other experi-
mental data. However, the ultimate goal of ab initio cas-
cade calculations demands more accurate results for the
collisional processes.
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A fully quantum mechanical treatment based on adia-
batic potentials was given in [12–15]. However, the shifts
and widths of the ns states which become important in
the final part of the cascade were not included in this
framework. The deceleration and radiative quenching of
muonic hydrogen in the metastable 2s state were studied
in a close-coupling framework in [16]. We reexamined the
same problem in [17] avoiding some of the approximations
used in [16]. As the close-coupling model can be modified
in a straightforward manner to include nuclear absorption
in hadronic atoms [18], it is well suited for describing the
collisional processes during the atomic cascade.

In this paper, we present a unified treatment of Stark
mixing, elastic scattering, and, in the case of hadronic
atoms, nuclear absorption during collisions. For the time
being, we restrict our calculations to exotic hydrogen-like
atoms. The paper is organized as follows. In Section 2 we
present the quantum mechanical close-coupling framework
used for the calculation of the scattering of x−p atoms
in excited states from atomic hydrogen. The same pro-
cesses are treated in the semiclassical approximation in
Section 3. The results (differential, partial wave and total
cross-sections) are discussed in Section 4 and summarized
in Section 5.

Unless otherwise stated, atomic units (~ = e = me =
1) are used throughout this paper. The unit of cross-
section is a2

0 = 2.8 × 10−17 cm2, where a0 = ~2/mee
2

is the electron Bohr radius.

2 Close-coupling calculation
of the cross-sections

In this section, the close-coupling framework developed in
reference [17] for the three-body reaction

(x−p)nl + H→ (x−p)nl′ + H (1)

will be generalized to include absorption effects in
hadronic atoms. The following notations are used: the neg-
ative particle x− with mass mx and the proton with mass
mp form an exotic atom with the total mass Mxp = mx +
mp and the reduced mass µxp = mxmp/Mxp. The coordi-
nates used in the calculations are explained in Figure 1.
The relative orbital angular momentum of x−p and H is
denoted by L, the internal x−p orbital angular momentum
by l, and the total orbital angular momentum by J = L+l.

2.1 The effective x−p− H interaction

The exotic atom x−p is described by the Hamiltonian

Hxp = − ∇
2
r

2µxp
− 1
r

+∆V (2)

where ∆V includes all effects beyond the standard non-
relativistic Coulomb two-body problem: vacuum polariza-
tion, finite size effects, and, in case of hadronic atoms,

H

R
r

x

p

-

Fig. 1. Coordinates used for the effective three-body system
x−p−H: R is the vector from the target proton to the center
of mass of the exotic atom, r is the vector from the proton of
the x−p to the x−. The directions of R and r are denoted by
Ω and ω, respectively.

strong interaction between the two particles. For the con-
sidered systems, ∆V can be treated as a perturbation re-
sulting in the shift ∆Enl of the Coulomb energy levels:

〈nlm|Hxp|nlm〉 = Enl = −µxp
2n2

+∆Enl (3)

where the ket |nlm〉 denotes the nlm state of the stan-
dard Coulomb problem. In the case of hadronic atoms,
the atomic cascade is often terminated before reaching
the ground state due to nuclear reactions like

π−p → π0n, γn, (4)
K−p → Σ±π∓, Σ0π0, Λn. (5)

This effect is described by the imaginary part of the com-
plex energy shift ∆Enl

Im(∆Enl) = −Γnl/2 (6)

where the width Γnl is the nuclear reaction rate from
the nl state. For the collisional processes with the exotic
hydrogen-like atoms, it is sufficient to take into account
only the widths of the ns states. The n dependence of the
hadronic part of the complex nuclear shift is described by
the Deser formula [19]

∆Ehad
ns =

∆Ehad
1s

n3
· (7)

The Hamiltonian for the x−p−H system is given by

H = −∇
2

2µ
+ V (r,R) +Hxp (8)

where

µ =
MxpMH

Mxp +MH
(9)

is the reduced mass of the (x−p+ H) system, and V (r,R)
is the Coulomb interaction of the exotic atom with the
hydrogen electric field. In most cases of cascade studies,
the effects of hydrogen excitation or ionization in the col-
lisions without changing n can be neglected. The electric
field of a hydrogen atom in the ground state has the form

F(R) =
R
R
F (R) (10)
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where

F (R) =
1
R2

(1 + 2R+ 2R2)e−2R. (11)

The potential energy is a function of only three variables

V (r,R) = V (z′, r′, R) (12)

where r′ = (x′, y′, z′) is r in a rotated coordinate system
with the z′-axis taken along R. The electric field of a hy-
drogen atom is sufficiently strong to mix the l sublevels
of the x−p atom during a collision at distances of a few
atomic units, a0, which are much larger than the size of
the x−p at low n. Since Stark mixing is essentially a long-
distance process, one can use the dipole approximation for
the potential

V (r,R) = z′F (R). (13)

This can be easily generalized to scattering from other
target atoms: one uses the electric field generated by the
nucleus and the electronic charge density.

Given the above defined interactions, we solve the time
independent Schrödinger equation

Hψ(r,R) = Eψ(r,R) (14)

with the standard boundary conditions for this multichan-
nel scattering problem using the close-coupling approxi-
mation. The internal x−p wave function is expanded into
the set of n2 Coulomb wave functions with the same quan-
tum number n:

ψ(r,R) = R−1
∑
JMlΛ

φJlΛ(R)DJ∗
ΛM (Ω)χnlΛ(r′). (15)

The functions χnlΛ(r′) are the Coulomb wave functions
in a rotating coordinate system with the z′-axis cho-
sen as the quantization axis and DJ

ΛM (Ω) are the corre-
sponding rotation functions (see Appendix A). The func-
tions χnlΛ(r′) are related to the space fixed functions
χnlm(r) = rnl(r)Ylm(ω) by

χnlm(r) =
l∑

Λ=−l
Dl∗
mΛ(Ω)χnlΛ(r′). (16)

The expansion (15) leads to the set of n2 coupled
second order differential equations for the radial func-
tions φJlΛ(R)

(
− 1

2µ
d2

dR2
+Enl −E

)
φJlΛ(R)

+
∑
l′Λ′

( 〈n;JMΛ′l′|L2|n;JMΛl〉
2µR2

+ ′〈nl′Λ′|V (z′, r′, R)|nlΛ〉′
)
φJl′Λ′(R) = 0. (17)

The basis states |n;JMΛl〉 are simultaneous eigenstates
of Hxp, J2, Jz, Jz′ , and l2 with eigenvalues Enl, J(J + 1),

M , Λ, and l(l+ 1), respectively, and are given by

|n;JMΛl〉 = |JMΛ〉|nlΛ〉′, (18)

〈Ω|JMΛ〉 =

√
2J + 1

4π
DJ∗
MΛ(Ω),

〈r′|nlΛ〉′ = χnlΛ(r′).

The ket |nlΛ〉′ denotes the eigenstates of the Coulomb
problem in the rotated coordinate system.

Because of rotational invariance the quantum num-
bers J and M are conserved and the radial wavefunc-
tions φJlΛ(R) are independent of M . The expansion (15)
is convenient for computing matrix elements of the po-
tential V (z′, r′, R). In the dipole approximation, the non-
vanishing matrix elements of z′ correspond to |∆l| = 1
and ∆Λ = 0 where one has

′〈nlΛ|z′|n(l − 1)Λ〉′ = − 3n
2µxp

√
(l2 − Λ2)(n2 − l2)
(2l+ 1)(2l − 1)

· (19)

The basis states (18) are not the eigenstates of L2, but
the matrix elements of L2 can be easily obtained by using

L2 = (J− l)2 = J2 + l2 − 2Jz′ lz′ − l′+J ′− − l′−J ′+. (20)

Together with the results and notations of Appendix A
this gives (see also Ref. [20])

〈n;JMΛ′l′|L2|n;JMΛl〉 =

δll′δΛΛ′
(
J(J + 1) + l(l + 1)− 2Λ2

)
− δll′

(
δΛ+1Λ′λ−(J,Λ)λ+(l, Λ)

+ δΛ−1Λ′λ+(J,Λ)λ−(l, Λ)
)
. (21)

The rotated basis functions were used by Carboni and
Fiorentini [16] to study (µ−p)2s + H collisions in an ap-
proximation where the terms δll′δΛΛ′(l(l+1)−2Λ) in equa-
tion (21) were neglected.

One can get a partial decoupling of the equations (17)
by using the following expansion

ψ(r,R) = R−1
∑
JMLl

ξJLl(R)YJMLl (Ω,ω)rnl(r) (22)

where the functions

YJMLl (Ω,ω) =
∑
MLm

〈LlMLm|JM〉YLML(Ω)Ylm(ω) (23)

are simultaneous eigenfunctions of J2, L2, l2, and Jz with
eigenvalues J(J+1), L(L+1), l(l+1), and M respectively.
The system of the radial Schrödinger equations for the
functions ξJLl(R) has the form

(
− 1

2µ
d2

dR2
+
L(L+ 1)

2µR2
+Enl −E

)
ξJLl(R)

+
∑
L′l′

〈n;L′l′JM |V (z′, r′, R)|n;LlJM〉ξJL′l′(R) = 0

(24)
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with the basis states

〈Ω, r|n;LlJM〉 = YJMLl (Ω,ω)rnl(r). (25)

Due to the parity conservation, the value P = (−1)L+l

is conserved, and, as a result, the n2 differential equa-
tions (24) are decoupled into two sets of n(n + 1)/2 and
n(n−1)/2 coupled equations for P = 1 and P = −1 corre-
spondingly. The systems of equations (17, 24) are related
to each other by the linear transformation

φJlΛ(R) =

√
2J + 1

4π

∑
L

uJlΛLξJlL(R) (26)

where the coefficients uJlΛL are given by equation (A.6).
The matrix elements of the potential energy can then be
obtained from those of the rotated basis by using the co-
efficients uJlΛL

〈n;L′l′JM |V (z′, r′, R)|n;LlJM〉 =∑
ΛΛ′

uJl
′

Λ′L′u
Jl
ΛL
′〈nl′Λ′|V (z′, r′, R)|nlΛ〉′ · (27)

2.2 Cross-sections

The scattering matrix was calculated numerically using a
version of the variable phase method [21] described in Ap-
pendix B. In order to treat the ns states of hadronic atoms
as normal asymptotic states the absorptive term (6) was
switched off for the distances between x−p and H larger
than 5a0. The absorption from the ns states between the
collisions can be easily taken into account by means of a
cascade model.

The use of the dipole approximation in the quantum
mechanical framework makes it necessary to introduce
the regularization parameter Rmin as explained in Ap-
pendix B. The dependence of calculated cross-sections on
Rmin will show how sensitive the results are to the short
distance behavior (we will show a few examples in Sect. 4).

The scattering amplitude for the transition nlm →
nl′m′ is given by

fnlm→nl′m′(Ω) =
4π

2i
√
k′k

∑
L′LM′L

(
iL−L

′
YL′M′L(Ω)

× 〈n;L′l′M ′Lm
′|S − 1|n;Ll0m〉Y ∗L0(0, 0)

)
(28)

where Ω is the CMS scattering angle, k and k′ are the
CMS relative momenta of the initial and final state corre-
spondingly. The S-matrix elements in (28) are related to
the matrix elements between the basis states (18) by the
relation

〈n;L′l′M ′Lm
′|S|n;Ll0m〉 =∑

J

〈L′l′M ′Lm′|Jm〉〈Jm|Ll0m〉〈n;L′l′Jm|S|n;LlJm〉 ·

(29)

The differential and total cross-sections for the transitions
nl→ nl′ are given by

dσnl→nl′
dΩ

=
1

(2l + 1)
k′

k

∑
m′m

|fnlm→nl′m′ |2, (30)

σnl→nl′ =
1

(2l + 1)
π

k2

×
∑

JMLL′

|〈n;L′l′JM |S − 1|n;LlJM〉|2

=
1

(2l + 1)
π

k2

∑
J

(
(2J + 1)

×
∑
LL′

|〈n;L′l′JM |S − 1|n;LlJM〉|2
)
. (31)

The corresponding transport cross-sections are given by

σtr
nl→nl′ =

∫
dΩ(1− cos θ)

dσnl→nl′
dΩ

· (32)

In the case of hadronic atoms, the scattering matrix is not
unitary because of the absorption. The cross-sections for
the absorption processes are given by

σnl→abs =
π

k2

∑
J

(
(2J + 1)

×
(

1− 1
(2l + 1)

∑
LL′l′

|〈n;L′l′JM |S|n;LlJM〉|2
))
·

(33)

The differential cross-sections (30) and the absorption
cross-sections (33) are used in the detailed cascade models
as described in [3,4]. When less detailed information is suf-
ficient, l-average cross-sections defined below can be used.
In particular, in those cases where the rates for collisions
without change in n are much larger than other cascade
rates, the approximation of the statistically weighted dif-
ferential cross-section is useful:

dσn−av

dΩ
=

1
n2

∑
ll′

(2l + 1)
dσnl→nl′

dΩ
· (34)

As a measure of the overall strength of Stark mixing, one
can use the l-average Stark cross-section:

σSt =
1
n2

∑
l6=l′

(2l+ 1)σnl→nl′ . (35)

For hadronic atoms with the strong absorption in the
s states, we define the statistically weighted differential
cross-section (34) and the average Stark cross-section (35)
to include only terms with l > 0 and l′ > 0. The average
absorption cross-section is defined by

σabs =
1

n2 − 1

∑
l6=0

(2l+ 1)σnl→abs (36)
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which gives a measure of the absorption strength under
the assumption of statistical population of the l 6= 0 sub-
levels. Strong absorption can also take place between the
collisions (if the hadronic atom leaves the collision zone in
an s state) which is not reflected by equation (36). To this
end we define the average cross-section

σav→ns =
1

n2 − 1

∑
l6=0

(2l+ 1)σnl→ns (37)

which describes the transitions to the ns state from the
statistically populated nl sublevels with l > 0. Whether
the s state is completely or partially depleted between
the collisions depends on the type of atom, the quantum
number n, the density of the target, and the kinetic energy.
To estimate the upper limit of the absorption, we define
the maximum absorption cross-section as the l-averaged
sum of the cross-sections for nuclear absorption during
and after collision

σmax abs = σabs + σav→ns. (38)

The Stark mixing, deceleration, and absorption rates,
which are often used in cascade calculations, are defined
by the formulas

λSt = NvσSt, (39)

λdec = 2
MHMxp

(MH +Mxp)2
Nvσtr, (40)

λabs = Nvσabs (41)

where N is the target density and v the velocity of the
exotic atom. When a significant part of the nuclear reac-
tions takes place between the collisions, the absorption is
better described by the effective absorption rate defined
as following

λeff abs = λabs +
λav→ns

1 +
∑
l6=0 λns→nl/Γns

· (42)

In the case of very strong absorption during the collisions,
the relation λav→ns � λabs holds, and therefore

λeff abs ≈ λabs (for Γns →∞) · (43)

When absorption from the p states is important, the effec-
tive rate for p state absorption is defined analogously to
equation (42) by considering statistically populated l > 1
states. A simple comparison of the energy dependent rates
for the different processes cannot substitute detailed cas-
cade calculations using the detailed cross-sections equa-
tions (30, 33) but may be helpful for getting a quick
overview. We shall present a few examples in Section 4.

3 Semiclassical approximation

As the number of coupled second order differential equa-
tions in the quantum mechanical model of Section 2
grows as n2, a simpler framework is desirable for high

n states. If the collision energy is sufficiently large, one
can expect that the relative x−p − H motion can be
treated classically. A rough estimate of the minimum ki-
netic energy T for which a classical-trajectory descrip-
tion is valid can be obtained from the requirement that
a large number of partial waves L ∼ 2a0k (2a0 being the
approximate range of the interaction) contribute to the
cross-section; that gives for the kinetic energy of muonic
hydrogen T > 0.7 eV at L > 10. As known from exper-
iment (see [4] and references therein), the exotic atoms
can reach kinetic energies of several eV during the cas-
cade, and this makes a semiclassical treatment applica-
ble to many cases of practical interest. The model that
has been used most often is the straight-line-trajectory
approximation [1,2,8–11] where the small neutral exotic
atom is considered as moving along a straight line with
constant velocity through the electric field of the target
atom1. The time dependent electric field causes transi-
tions among the sublevels of the exotic atom, which are
treated quantum mechanically. This approach was usually
used for the calculation of the Stark mixing rates, but, as
discussed below, differential and absorption cross-sections
can be calculated as well.

A semiclassical description of our scattering problem
is obtained by treating some of the 6 variables (R and r)
as classical time dependent variables. The remaining vari-
ables correspond to the quantum mechanical part of the
system that is described by the wave function ψ(t) satis-
fying the Schrödinger equation

i
∂ψ(t)
∂t

= HSC(t)ψ(t) (44)

whereHSC(t) depends on t through the classical variables.
The wave function ψ(t) is expanded into a set of orthonor-
mal basis states

ψ(t) =
∑
j

aj(t)|αj〉 (45)

leading to the time dependent Schrödinger equation

iȧj(t) =
∑
k

HSC
jk (t)ak(t) (46)

which must be solved with appropriate boundary condi-
tions.

To establish a connection to results in the literature we
will first discuss the simple fixed field model of Leon and
Bethe [1,11] where the R motion is assumed to be clas-
sical and the x−p atom is treated quantum mechanically.
The assumptions are as follows: the x−p moves along a
straight line with constant velocity v (R(t) =

√
(vt)2 + ρ2

where ρ is the impact parameter), only transitions within
the n2 states with the given principal quantum number n
are considered, all the n2 states are degenerate, and the
electric field from the target atom is directed along the

1 Another possibility, which we will not consider here, is to
use deflected trajectories.
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quantization axis of the x−p. After expanding the inter-
nal wave function of the exotic atom into the Stark eigen-
states (|nn1Λ〉, n1 = 0, ..., n − |Λ| − 1) one is left with a
single channel scattering problem

iȧnn1Λ(t) = Vnn1Λ(R(t))ann1Λ(t) (47)

where

Vnn1Λ(R) =
3n

2µxp
(2n1 − n+ |Λ|+ 1)F (R). (48)

Equation (47) is solved with the boundary condition

ann1Λ(−∞) = 1 (49)

for a range of values of the impact parameter ρ

ann1Λ(t) = exp
(
−i
∫ t

∞
V (R(t))dt

)
· (50)

The eikonal phase shift function [22]

χ(ρ) = −
∫ ∞
∞

V (R(t))dt (51)

is used (we take J+1/2 = kρ, where k = µv is the relative
momentum) to obtain the scattering amplitude

f eikonal
nn1Λ (θ) =

1
2ik

Jmax∑
J=0

(2J + 1)

× (eiχ((J+1/2)/k) − 1)PJ (cos θ) (52)

and the differential cross-sections

dσeikonal
nn1Λ

dΩ
= |f eikonal

nn1Λ (θ)|2. (53)

This model is not sufficiently accurate for our purposes. In
Section 3.1 we generalize it to include different thresholds,
nuclear absorption during collisions, and correct angular
coupling between the substates.

3.1 Semiclassical model

In this case only the radial R motion is considered to be
classical, the other five variables (Ω, r) are kept quantized.
The problem of x−p scattering from hydrogen becomes
a multichannel scattering problem with different channel
momenta and orbital angular momenta. We collect the
(complex) energy shifts and the angular part of the kinetic
energy of the different channels in the diagonal n2 × n2

matrices ∆E and L, respectively. The collision is specified
by the CMS collision energy

Ecm =
1
2
µv2 =

k2

2µ
(54)

and the angular momentum J . Neglecting the deflection
of the neutral x−p atom we take the classical motion to be

R = R(t) =
√

(vt)2 + ρ2 (55)

where ρ =
√
J(J + 1)/k. This introduces some ambiguity

into the model because it requires a common motion R(t)
for all channels. In this paper we take the common mo-
mentum k to be that of the l = (n−1) states for hadronic
atoms while we use the ns state in the case of muonic
hydrogen.

We expand the quantum mechanical part of the system
into the states

|αj〉 = |n;LlJM〉 (56)

and obtain the time dependent Schrödinger equation in
matrix form

iȦ(t) = HSC(t)A(t) (57)

where HSC(t) is a n2 × n2 matrix given by

HSC(t) =
L(L+ 1)− J(J + 1)

2µR2(t)
+ V (R(t)) +∆E. (58)

The potential matrix has the elements

Vij(R) = 〈n;L′l′JM |V |n;LlJM〉 (59)

as in equation (24).
Equations (57) are integrated from −tmax to tmax,

where tmax is chosen so large that the potential can be ne-
glected for distances larger than R(tmax), with the bound-
ary conditions

A(−tmax) = I. (60)

The semiclassical scattering matrix is given by

SSC = QA(tmax)Q (61)

where Q is the diagonal matrix given by

Q = exp
(

i
L(L+ 1)− J(J + 1)

2ρk
arctan(vtmax/ρ)

+ iRe(∆E)tmax

)
. (62)

With the semiclassical scattering matrix and the formulas
from Section 2, results for differential, total and absorption
cross-sections can be obtained.

3.2 Fixed field model

The semiclassical approximation simplifies the numerical
calculations: instead of a system of second order differ-
ential equations the same number of first order differen-
tial equations must be solved. A further simplification can
be made by neglecting the coupling between the internal
x−p angular momentum l and the orbital angular momen-
tum L. This corresponds to the approximation

L = J (63)
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(b) transitions are only possible between states with the same eigenvalue Λ of x−p angular momentum along the interatomic
axis.

in the case discussed above in Section 3.1. In this approx-
imation, the quantum number Λ is conserved in addition
to J and M (see Fig. 2).

By expanding the solution into the rotated basis
states (|αj〉 = |n;JMΛl〉) one finds the time dependent
Schrödinger equation in matrix form

iȦ(t) = (ZF (R(t)) +∆E)A(t), (64)
A(−tmax) = I (65)

where

Zij = ′〈nlΛ|z′|nl′Λ〉′ · (66)

Equation (64) must be solved for each value of Λ, |Λ| < n.
If the states with l > 0 are taken to be degenerate, equa-
tion (64) with Λ 6= 0 decouple completely in parabolic co-
ordinates [1,11] and is easily integrated as shown above.
This is also the case for Λ = 0 when the ns energy shift
is negligible. If not, one must solve n coupled first order
equations.

The fixed field scattering matrix is defined by

SFF = QFFA(tmax)QFF (67)

where the diagonal matrix QFF is given by

QFF = exp
(

iRe(∆E)tmax

)
· (68)

The fixed field scattering amplitude is given by

fnlΛ→nl′Λ(θ) =
1

2ik
×
∑
J

(2J + 1)〈n;JMΛl′|SFF − 1|n;JMΛl〉PJ(cos θ)

(69)

and the differential cross-section by

dσnl→nl′
dΩ

=
1

2l+ 1

∑
Λ

|fnlΛ→nl′Λ(θ)|2. (70)

The matrix elements in the r.h.s of equation (69) are ac-
tually independent of M since this quantum number is
conserved. The cross-sections for the processes nl → nl′

and nl→ absorption are given by

σnl→nl′ =
1

2l + 1
π

k2

×
∑
J

(2J + 1)
∑
Λ

|〈n;JMΛl′|SFF − 1|n;JMΛl〉|2 (71)

and

σnl→abs =
1

2l+ 1
π

k2

∑
J

(2J + 1)
(

(2l + 1)

−
∑
Λl′

|〈n;JMΛl′|SFF|n;JMΛl〉|2
)
· (72)

4 Results

Using the methods described in Sections 2 and 3 we have
calculated the cross-sections for the collisions of the µ−p,
π−p, K−p, and p̄p atoms in excited states with hydrogen
atoms. Our calculations had two major goals: first, to pro-
vide comprehensive sets of the collisional cross-sections,
which are necessary for detailed cascade calculations, and,
second, to investigate the range of validity of the approxi-
mate methods based on the semiclassical model and often
used in the literature. The numerical calculations have
been done for the principal quantum numbers n and the
atomic kinetic energies that are of interest for the cascade
calculations. The quantum mechanical framework of Sec-
tion 2 was used for the lower excited states n = 2−5, and
the semiclassical calculations were done for the range of n
up to n ∼ 10.

As the number of the calculated differential cross-
sections is quite large (about 1 200 for µ−p) only a small
part of the results can be shown here, as we describe some
main features of the calculated cross-sections illustrating
them with particular examples for different exotic atoms.
Concerning the detailed results, they have all been used
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Fig. 3. The differential cross-sections for (µ−p)5s + H →
(µ−p)5s,p,g + H vs. CMS scattering angle θ at the laboratory
kinetic energy T = 3 eV.

as input for the Monte Carlo kinetics code [23,24], and
the results of the cascade calculations will be published
elsewhere.

4.1 Muonic hydrogen

The muonic hydrogen scattering is the least complicated
case because there is no nuclear absorption in the inter-
action. The differential cross-sections are known to have a
characteristic shape with a strong forward peak and a pat-
tern of maxima and minima [14,17,18] as expected for the
interaction that is essentially of a dipole-like type. Figure 3
shows an example of the differential cross-sections for the
elastic scattering 5s → 5s and Stark transitions 5s → 5p
and 5s → 5g. The elastic cross-section has a strong peak
at zero scattering angle, while the Stark transitions reach
their maxima at finite scattering angle. The peaking in
the forward hemisphere is much less pronounced for larger
changes in quantum number l.

To compare the results of different methods from the
viewpoint of practical applications it is better to look at
cross-sections averaged over some appropriate distribution
over l or kinetic energy T since many tiny details will be
washed out anyway in the cascade evolution. For the pur-
pose of illustration as well as for simple estimates, the
statistically weighted cross-sections are especially useful.
Figure 4 shows an example of the statistically weighted
differential cross-section for n = 5 calculated in the fully
quantum mechanical model for two values of the cut-
off parameter Rmin (0.05 and 0.10) in comparison with
the semiclassical and fixed field approximation. While the
cross-sections for the individual transitions nl → nl′ are
somewhat sensitive to the short range cut off Rmin, the
cut-off dependence smoothes out in the averaged cross-
sections. The semiclassical results are in a good agreement
with the quantum mechanical ones for energies above 1 eV
and n > 2. The fixed field model provides, on average, a
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Fig. 4. The statistically weighted differential cross-sections for
(µ−p)n=5 + H→ (µ−p)n=5 + H vs. CMS scattering angle θ at
the laboratory kinetic energy T = 3 eV. The fully quantum
mechanical (QM) results computed with Rmin = 0.05 and 0.10
are shown with solid lines, the result of the semiclassical (SC)
model is shown with a dashed line, and that of the fixed field
model (FF) with a dash-dotted line.
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Fig. 5. Partial wave cross-sections for (µ−p)5s + H →
(µ−p)5p + H vs. total angular momentum J at the laboratory
kinetic energy T = 3 eV. The fully quantum mechanical re-
sults are shown with bars, the dashed and dash-dotted lines
correspond to the semiclassical and the fixed field models.

fair agreement with the more accurate methods for the
scattering.

Another illuminating way to inspect the complicated
structure of the differential cross-sections is presented in
Figure 5 that shows the partial wave cross-sections for the
reaction (µ−p)5s + H → (µ−p)5p + H at T = 3 eV. The
partial waves can be divided in two groups corresponding
to the regimes of “weak-coupling” or “strong-coupling”
behavior. The higher partial waves can be reliably de-
scribed (J ≥ ka ≈ 18 for this example) in the semiclassical
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energy T = 3 eV. The light solid line is the unitarity limit, and
the light dashed line is the result for the statistical mixing.

approximation, with the partial cross-section showing a
smooth dependence on the total angular momentum J .

For the lower partial waves, all l states are strongly
mixed with each other, and the partial cross-sections dis-
play a strong dependence on both J and T . While the
semiclassical approximation is not applicable in this sit-
uation for individual amplitudes, it still makes a reason-
able estimate for the average partial cross-sections as they
are mainly determined by the statistical weight of the fi-
nal states. As long as the largest contribution to the total
cross-section comes from the total angular momenta corre-
sponding to the semiclassical regime, the semiclassical ap-
proximation is adequate for all practical purposes. These
two regions of J are also different with respect to the de-
pendence of the Stark cross-sections on the change of the
orbital quantum number l. In the semiclassical regime,
the transition amplitude rapidly decreases with increas-
ing change in l. In particular, the corresponding partial
cross-sections for the transition 5s → 5p are larger than
the ones for the 5s→ 5d transition.

Figure 6 shows the statistical average partial cross-
sections for Stark mixing in the states n = 3, 4, 5 in com-
parison with the unitarity limit. In the strong coupling
regime, a simple estimate for the average cross-section can
be obtained by assuming that the scattering phases are
rapidly changing, so that they appear as being “random”
(in the old picture of the Stark phase accumulated along
a trajectory with a small impact parameter it corresponds
to the so-called complete mixing when the initial state is
forgotten after the collision). For the higher partial waves,
the average cross-sections are limited not by the unitarity
constraint, but by the centrifugal barrier which becomes
so strong that it prevents the exotic atom from getting
close to the hydrogen atom.

The dependence of the total cross-sections on the ki-
netic energy is shown in Figure 7 for the transitions

10
0

10
1

T (eV)

10
0

10
1

σ 
(a

02 )

5s−>5s

5s−>5p

5s−>5g

Fig. 7. Cross-sections for (µ−p)5s + H → (µ−p)5s,p,g + H vs.
laboratory kinetic energy T . The fully quantum mechanical
results (solid lines) are shown in comparison with the results
of the semiclassical (dashed lines) and the the fixed field model
(dash-dotted lines).

with different change in the µ−p orbital quantum num-
ber lf − li = 0, 1, 4: (µ−p)5s + H → (µ−p)5s,p,g + H. As
it was said before, the semiclassical calculations are in a
good agreement with the quantum mechanical ones for ki-
netic energies above 1 eV. Below 1 eV, where only a few
partial waves contribute, the agreement is still fair after
averaging over some energy range. The fixed field model is
in a fair agreement with the other two. The cross-sections
of the fixed field model tend to oscillate more than the
cross-sections computed in the other two models. For ex-
ample, in the fixed field model the 5s state is coupled
only to one of the 5g substates and the corresponding
transition is described by one phase shift for each partial
wave J . The quantum mechanical and the semiclassical
models connect the 5s state with 5 of the 9 substates 5g
(see Fig. 2) for a given angular momentum J , and the
average cross-section is smoother as it is distributed over
a larger number of individual contributions. Compared to
the 5s→ 5p cross-section, the fluctuations in the 5s→ 5g
cross section in the fixed field approximation are stronger
because fewer partial waves contribute to this transition.

A brief overview of the Stark mixing and the deceler-
ation in competition with the deexcitation mechanisms is
presented in Figure 8 for a typical example of the µ−p
state n = 5 in hydrogen gas at 15 bar corresponding
to 0.018 of liquid hydrogen density. The muonic hydrogen
atoms arriving at the n = 5 state during the atomic cas-
cade will, on average, undergo a few transitions changing
the orbital quantum number and loose about half of their
kinetic energy before Auger deexcitation or, less probably,
the radiative transition takes place (assuming no other ef-
fects, like muonic molecule formation). Because the evo-
lution of the kinetic energy distribution is important, de-
tailed kinetics cascade calculations [23,24] are needed to
treat this problem.
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4.2 Pionic hydrogen

The scattering problem for hadronic atoms is more com-
plicated than for the muonic atoms because of the nu-
clear absorption and larger energy shifts. The previous
fully quantum mechanical calculations based on adiabatic
potentials [14,15] did not take the shifts and widths of
the s states into account, and all the other studies were
based either on the approximation suggested in [1] or on
the time dependent Stark mixing along classical trajec-
tories [26,27]. In this section we present the first results
of the quantum mechanical calculations in comparison
with the traditional approximations. The strong interac-
tion shift and width of the 1s state of pionic hydrogen from
the final analysis of the PSI experiment [28,29] were used
to calculate the complex energy shifts of the ns states:

∆Ens =
εhad
1s − iΓ1s/2

n3
+ εvp

ns, (73)

εhad
1s = −7.11 eV, (74)
Γ1s = 0.87 eV (75)

where εvp
ns is the energy shift due to the vacuum polariza-

tion [30]

εvp
1s = −3.24 eV, (76)
εvp
2s = −0.37 eV, (77)
εvp
3s = −0.11 eV. (78)

The collisions with transitions between the states l > 0
(n > 2) are qualitatively similar to muonic hydrogen with
respect to Stark mixing and differential cross-sections. The
transitions to the ns states are less probable due to the
strong interaction energy shift and the nuclear reactions
taking place during collisions.
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Fig. 9. The pionic hydrogen cross-sections for the elastic scat-
tering 2p → 2p and the maximum absorption from the 2p
state vs. the 2p − 2s energy difference at the laboratory ki-
netic energy T = 3 eV. The fully quantum mechanical results
are shown with solid lines. The semiclassical results are shown
with dashed lines and those of the fixed field model with dash-
dotted lines. The light vertical line shows the physical value
for the energy splitting. The 2s width is Γ2s = 0.11 eV.

To illustrate the effect of the complex energy shift
we consider the cross-sections σ2p→2p and the maximum
absorption cross-section σmax abs = σ2p→abs + σ2p→2s at
T = 3 eV for different unphysical values of the 2p − 2s
energy difference and the widths Γ2s using the models de-
scribed in Sections 2 and 3. Figure 9 shows the dependence
on the energy shift for the physical value of the width
Γ2s = 0.11 eV. All three models feature a strong influence
of the energy splitting |E2p −Re(E2s)| on the Stark mix-
ing with the 2s state: the nuclear absorption is much more
likely when the energy splitting is small in comparison
with the characteristic Stark splitting in the electric field
of the target atom. For small |E2p − Re(E2s)|, the semi-
classical model agrees well with the quantum mechanical
results for both cross-sections, but starts to deviate when
the energy splitting is increased.

The dependence of the cross-sections on the Γ2s with
the energy difference fixed at the physical value 1.26 eV
(the sum of the strong interaction shift and the vacuum
polarization) is shown in Figure 10. For Γ2s > 0.5 eV, the
absorption cross-sections calculated in the semiclassical
model are in good agreement with the quantum mechani-
cal result, while the result of the fixed field model is about
20% lower. The good agreement between the semiclassi-
cal and the quantum mechanical model can be explained
as follows: when the nuclear reaction rate is high the ab-
sorption process takes place immediately from a mixed
2s − 2p state and is not very sensitive to the kinemat-
ics of the 2s channel (the available phase space), which
is treated incorrectly in the semiclassical approximation.
Both the semiclassical and the fixed field models break
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Fig. 10. The pionic hydrogen cross-sections for the elastic
scattering 2p→ 2p and maximum absorption from the 2p state
vs. the nuclear width Γ2s at the laboratory kinetic energy T =
3 eV. The fully quantum mechanical results are shown with
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The light vertical line shows the physical value for the 2s width.
The 2p− 2s energy splitting is 1.26 eV.

down for smaller Γ2s, including the physical value, where
an accurate treatment of the kinematics is necessary.

In general, the fixed field model underestimates the nu-
clear absorption during collision in comparison with the
semiclassical model. As shown in Figure 2, the fixed field
model allows only one of the 2p substates to be mixed
with the 2s state and undergo nuclear absorption, whereas
the correct parity conserving angular coupling used in our
semiclassical model mixes two of the 2p substates with the
2s state (in the coupled basis). For example, for the phys-
ical values (E2p − Re(E2s) = 1.26 eV and Γ2s = 0.11 eV)
the maximum absorption cross-section at 3 eV is increased
by about 18% when the semiclassical model is used instead
of the fixed field model.

In our quantum mechanical model, the interaction be-
tween the exotic atom and the target hydrogen atom is ap-
proximated by the dipole term, which is adequate for large
distances. When the distance becomes small, this approx-
imation breaks down together with the other ones (the
close-coupling expansion into the basis of atomic states
with the same n without taking into account symmetry
requirements for identical particles). Neglecting rotational
coupling and energy shifts, the effective potential energy
in the dipole approximation for π−p−H system is given by

Veff(R) =
3n

2µπ−p
(2n1 − n+ |Λ|+ 1)F (R) +

J(J + 1)
2µR2

(79)

where the parabolic quantum number n1 runs from 0 to
n−|Λ|− 1. Figure 11 shows Veff(R) as a function of R for
n = 3 and J = 4. Three of the nine potentials are attrac-
tive for small R and have a R−2 singularity in R = 0. The
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Fig. 11. The effective potentials for the system (π−p)n=3 + H
with total angular momentum J = 4. The curves are labeled
with the quantum numbers (n1, Λ).
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Fig. 12. l-average Stark, transport, and maximum absorption
cross-sections for (π−p)n=3 + H scattering vs. short distance
cut-off Rmin. The laboratory kinetic energy is 3 eV.

corresponding phase shifts are ill-defined in these cases.
When the correct angular coupling is used and the energy
shifts are included, the potential curves are modified, but
the problem with the ill-defined phase shifts in the dipole
approximation remains. In the present model, the prob-
lem is cured by inserting an infinitely hard sphere with
radius Rmin around the target nucleus. For low angular
momentum, this introduces a dependence of the scatter-
ing matrix on the cut-off parameter Rmin. This should
be considered as an uncertainty of the model related to
the approximate treatment of the short distance behav-
ior. An example of the Rmin dependence in the calcu-
lation of the (π−p)n=3 + H scattering is shown in Fig-
ure 12 for the l-average (l > 0) Stark, transport, and
maximum absorption cross-sections. Both the Stark and
the absorption cross-sections are rather insensitive to the
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the (π−p)n=3 + H scattering vs. CMS scattering angle θ at the
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quantum mechanical result, the dashed line is the semiclassical
model, and the dash-dotted line is fixed field model.

value of Rmin, whereas the transport cross-section, which
is more sensitive to the low partial waves, varies moder-
ately (1.0−1.8a2

0). However, this dependence of the trans-
port cross-section is less significant when the energy dis-
tribution in the atomic cascade is taken into account.

The statistically weighted differential cross-sections for
the l > 0 sector for (π−p)n=3 +H scattering shown in Fig-
ure 13 have the similar shape as those of the corresponding
process for n = 5 in muonic hydrogen (Fig. 4). Both the
semiclassical and the fixed field model work well at kinetic
energy T > 1 eV.

The J dependence of the average Stark cross-section
(only the states l > 0 are included) and the maximum
absorption cross-sections (the sum of the absorption dur-
ing collision and 3p, 3d → 3s) at kinetic energy 10 eV is
shown in Figure 14. Like in the case of muonic hydrogen,
the contribution to the Stark cross-section can be divided
into two parts: a small J region, where the mixing is strong
and the distribution over the final states is approximately
statistical, and a large J region, where the transitions with
|∆l| = 1 dominate. The semiclassical model is in a good
agreement with the quantum mechanical model, whereas
the agreement with the fixed field model is fair. All three
models are in a fair agreement for the maximum absorp-
tion cross-sections.

The relative role of nuclear absorption during the colli-
sions and between the collisions is illustrated in Figure 15
for pionic hydrogen with n = 3. The absorption cross-
section (i.e. the cross-section for nuclear absorption dur-
ing the collision, Eq. (36)) is shown in comparison with
the maximum absorption cross-section, equation (38). For
energies larger than ∼ 2 eV the π−p atom is more likely
to leave the collision zone in the 3s state than undergo
nuclear absorption. At high density, many of the (π−p)3s

atoms with high kinetic energy will leave the 3s state be-
fore the nuclear reaction can take place. The results of
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Fig. 14. The average Stark and maximum absorption cross-
sections for the (π−p)n=3 + H collisions vs. the total angular
momentum J at the laboratory kinetic energy T = 10 eV. The
solid lines are the fully quantum mechanical results, the dashed
lines are the semiclassical model, and the dash-dotted lines are
the fixed field model. The light solid line is the unitarity limit
and the light dashed line corresponds to the assumption of
statistical mixing.
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Fig. 15. The energy dependence of the absorption cross-
sections, equation (36), and the maximum absorption cross-
sections, equation (38), for pionic hydrogen with n = 3. The
solid lines are the fully quantum mechanical results, the dashed
lines are the semiclassical model, and the dash-dotted lines are
the fixed field model.

the semiclassical and the fixed field model are in a good
agreement with the quantum mechanical results for kinetic
energies larger than 10 eV. Below 10 eV the semiclassical
description breaks down and significantly underestimates
the absorption cross-sections.

Figure 16 shows the rates for different processes for the
(π−p)n=3 state in hydrogen gas at a pressure of 15 bar.
For energies larger than 0.05 eV Stark mixing is the fastest
process while the 3p → 1s radiative transition dominates
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Fig. 16. The energy dependence of the l-average Stark
(solid line), deceleration (dashed line), and effective absorp-
tion (dash-dotted line) rates for (π−p)n=3 at 15 bar. The dot-
ted lines are the radiative 3p → 1s and 3d → 2p rates. The
light short-dashed line is the 3→ 2 Auger deexcitation rate [1]
and the light dash-dotted line is the 3→ 2 adiabatic Coulomb
deexcitation rate [31].

for low energies. The effective absorption rate is smaller
than the Stark mixing rate due to the low statistical
weight of the 3s state and the 3p − 3s energy difference
(only important for low energies). The rates for 3 → 2
adiabatic Coulomb deexcitation [31] and external Auger
effect [1] are also shown for comparison; these collisional
deexcitation mechanism are obviously suppressed by the
absorption2. The deceleration rate exceeds the absorption
rate below 2 eV, but for higher energies the deceleration is
suppressed by the absorption, and for energies above 20 eV
becomes insignificant.

4.3 Kaonic hydrogen

The nuclear interaction effects in the scattering of the
K−p atoms in excited states are even more important than
in the case of π−p. The central values of the KEK result
for the 1s strong interaction shift and width of kaonic hy-
drogen [33] were used in our calculations:

εhad
1s = 327± 63(stat)± 11(syst) eV, (80)
Γ1s = 407± 208(stat)± 100(syst) eV. (81)

The cascade in kaonic hydrogen differs from that of pi-
onic hydrogen in the initial condition, it begins with a
higher n level: ninit(K−p) ∼ √µK−p ∼ 25 as compared to
ninit(π−p) ∼ √µπ−p ∼ 15. The much larger width of the
ns states makes the absorption during the collisions much

2 There is experimental evidence for the 3 → 2 Coulomb-
like deexcitation process in the neutron time-of-flight spectra
in both liquid and gaseous (40 bar) hydrogen [32] which can
be related to the formation of excited molecular states, see [30]
and references therein.
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Fig. 17. Absorption cross-sections for K−p in the 5p, 5d, and
5g states scattering from hydrogen vs. laboratory kinetic en-
ergy. The fully quantum mechanical results are shown with
solid lines, the semiclassical with dashed lines, and those of
the fixed field model with dash-dotted lines.

more probable than in the π−p atom. Another important
difference between the K−p and π−p cases is that in K−p
the ns energy shift is repulsive, therefore the nl→ ns tran-
sitions are not allowed below the corresponding threshold.
The strong interaction width of the 2p state3 is poorly
known from the KN scattering data, but its effect on the
collisional rates is negligible.

Figure 17 shows an example of the energy dependence
of absorption cross-sections for the states with n = 5.
The quantum mechanical results are shown only above
the 5s threshold as our numerical algorithm used in this
particular case is not reliable in the presence of closed
channels. Overall, there is a fair agreement between the
three models above the threshold. The fixed field model
does, however, result in absorption cross-sections that are
somewhat smaller for l > 1 than those of the semiclassical
model. This can be explained using Figure 2: the correct
angular coupling allows a larger fraction of the substates
with l > 0 to be mixed with the s state in a single collision
and thereby undergo nuclear absorption. Figure 18 shows
the l-average Stark, absorption, and deceleration rates for
n = 5 calculated in the semiclassical model in compar-
ison with the deexcitation rates for a typical gas target
at 10 bar. The (K−p)n=5 atoms with high kinetic ener-
gies are strongly absorbed while the radiative and Auger
deexcitations dominate in the low energy range. Like in
the case of pionic hydrogen the situation is complicated
by the deceleration due to elastic collisions. The results of
cascade calculations based on the presented cross-sections
were discussed in [34].

3 It is important for the cascade calculations and strongly
influences the yield of K X-ray lines, see [33,34].



178 The European Physical Journal D

10
−1

10
0

10
1

10
2

T (eV)

10
−2

10
−1

10
0

R
at

e 
(1

012
 s

−
1 )

Stark

Deceleration

5p−>1s (rad)

5g−>4f (rad)

Absorption

Auger

Fig. 18. The energy dependence of the l-average Stark (solid
line), absorption (dash-dotted line) and deceleration (dashed
line) rates for (K−p)n=5 at 10 bar. The results are calculated in
the semiclassical model. The l-average Auger rate [1] is shown
with a light dashed line and the radiative rates with dotted
lines.

4.4 Antiprotonic hydrogen

The case of antiprotonic hydrogen is similar to that of
K−p: the ns nuclear widths are large and the ns nuclear
shifts are repulsive. The following values [35] for the spin-
averaged shift and width were used in the present calcu-
lations:

εhad
1s = 721± 14 eV, (82)
Γ1s = 1097± 42 eV. (83)

The hadronic width of the 2p state in antiprotonic hydro-
gen [35]

Γ had
2p = 32.5± 2.1 meV (84)

is much larger than the radiative one and absorption dur-
ing the cascade from the p states is very important. The
widths of the other np states are given by

Γ had
np =

32(n2 − 1)
3n5

Γ had
2p . (85)

Figure 19 shows the calculated cross-sections for absorp-
tion from the s state at n = 8. The energy dependence
and the l dependence of these cross-sections are very sim-
ilar to the kaonic hydrogen case shown in Figure 17. The
semiclassical and fixed field models are in a fairly good
agreement. As was observed in the K−p case, the fixed
field model underestimates the absorption cross-sections
for l > 1 due to the approximate treatment of the angular
coupling. The rates for the l-average collisional processes
for (p̄p)n=8 at a pressure of 1 bar are shown in Figure 20
in comparison with the deexcitation rates: here the ab-
sorption just begins, it gets more important at the lower
n, like in the (K−p)n=5 case shown in Figure 18, and
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Fig. 19. Absorption cross-sections for p̄p in the 8p, 8d, 8f ,
and 8k states scattering from hydrogen vs. laboratory kinetic
energy. The results of the semiclassical model are shown with
dashed lines, and those of the fixed field model with dash-
dotted lines.
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Fig. 20. The energy dependence of the l-average Stark (solid
line), effective absorption (dash-dotted lines) and deceleration
(dashed line) rates for p̄p for n = 8 at 1 bar. The rates are cal-
culated in the semiclassical model. The l-average Auger rate [1]
is shown with a light dashed line and the radiative rates with
dotted lines.

then eventually terminates the cascade. As the p̄p annihi-
lation rate in the 8p state is 1012 s−1, the p state is almost
completely depleted between the collisions at 1 bar. The
absorption between collisions from the 8p state is compa-
rable in strength to the absorption from the 8s state dur-
ing collisions for energies below 1 eV and about two times
stronger for higher energies. The results of detailed cas-
cade calculations for antiprotonic hydrogen will be pub-
lished elsewhere.
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5 Conclusion

The total and differential cross-sections of Stark mixing
and elastic scattering have been calculated for the µ−p,
π−p, K−p, and p̄p atoms for the principal quantum num-
bers and the kinetic energies needed in detailed cascade
calculations. For hadronic atoms, the collisional absorp-
tion cross-sections have been calculated as well. For the
low states n = 2−5, the calculations have been done in
a fully quantum mechanical framework using the close-
coupling method. For the first time, the effects of nuclear
shifts and width of the ns states have been taken into ac-
count straightforwardly in the quantum mechanical scat-
tering problem. For the intermediate states n = 5−10, the
proposed semiclassical model provides an efficient compu-
tational method. By treating one degree of freedom (the
distance between x−p and H) classically, one can reduce
the original system of the coupled second order equations
to a system of first order equations while maintaining the
correct angular coupling between the x−p internal angu-
lar momentum and the relative orbital angular momentum
of x−p + H system. The semiclassical approximation has
been found to agree fairly well with the fully quantum
mechanical calculations, provided the collisional energy is
not too low so that the number of essential partial waves is
large. As the threshold behavior is not treated correctly in
the semiclassical approximation, transitions to and from
the ns states cannot be calculated reliably in the near-
threshold region.

Using the above described methods we were able to
assess the range of validity of the fixed field model, which
was commonly used in many cascade studies. In addition
to total Stark mixing and absorption cross-sections calcu-
lated with this model in the literature [1,11], we have cal-
culated the differential cross-sections for comparison with
the more accurate methods. When compared to the semi-
classical model, the fixed field model usually underesti-
mates the absorption cross-sections due to the lack of the
rotational coupling among the nl sublevels. When nuclear
absorption during collisions is negligible, the fixed field
model provides, on average, a fair description in compari-
son with the semiclassical approximation for kinetic ener-
gies larger than a few eV.

The results of this paper have been used in detailed
kinetics calculations of atomic cascade in µ−p and π−p
reported in [23]. The detailed description of the results,
together with those in K−p and p̄p, will be published in
separate papers [24].

A few problems remain, which are beyond the scope of
this paper. First, we have considered collisions with atomic
hydrogen. One can expect that the molecular structure of
the target becomes important for large n states when the
characteristic size of the exotic atom cannot be treated
as a small parameter in comparison with the conventional
atomic scale. We shall address this problem in a sepa-
rate paper [24]. Molecular effects [30] are also expected to
be important at low collisional energy when only a small
number of molecular ro-vibrational states can be excited.
This kinematical region partly overlaps with the region
of small energies where only a few partial waves are im-

portant and the dipole approximation is not justified. To
deal with these problems a genuine many-body framework
is needed.

We thank P. Hauser, F. Kottmann, L. Simons, D. Taqqu, and
R. Pohl for fruitful and stimulating discussions.

Appendix A: The rotation functions
DJ
�M(α, β, γ)

This paper uses the conventions of Condon and Shortley
for the spherical harmonics and those of reference [36] for
the rotation functions DJ

ΛM(α, β, γ). The rotation func-
tions DJ

MΛ(α, β, γ) are eigenfunctions of the square of the
total angular momentum J2 and its projections Jz and Jz′
along the z-axis and the z′-axis:

J2DJ
MΛ(α, β, γ) = J(J + 1)DJ

MΛ(α, β, γ),

JzD
J
MΛ(α, β, γ) = −MDJ

MΛ(α, β, γ),

Jz′D
J
MΛ(α, β, γ) = −ΛDJ

MΛ(α, β, γ). (A.1)

The raising and lowering operators are defined by

J± = Jx ± iJy,
J ′± = Jx′ ± iJy′ (A.2)

and have the properties

J±D
J
MΛ(α, β, γ) = −λ∓(J,M)DJ

M∓1Λ(α, β, γ),

J ′±D
J
MΛ(α, β, γ) = −λ±(J,Λ)DJ

MΛ±1(α, β, γ) (A.3)

where

λ±(J,M) =
√
J(J + 1)−M(M ± 1). (A.4)

In this paper only two of the Euler angles, α and β, are
used. Therefore, to simplify notation the rotation func-
tions can be written (Ω = (θ, φ)):

DJ
MΛ(Ω) = DJ

MΛ(φ, θ, 0). (A.5)

The coefficients uJlΛL used in the basis transformation (26)
can be found using the properties of the rotation func-
tions [36]

uJlΛL =

√
2J + 1

4π

×
∫

dΩdr
(
DJ∗
ΛL(Ω)χnlΛ(r′)

)∗
YJMLl (Ω,ω)rnl(r)

=
∑
MLm

(
〈LlMLm|JM〉

×
∫

dΩ DJ
ΛM(Ω)YLML(Ω)

∫
drχ∗nlΛ(r′)χnlm(r)

)
=
∑
MLm

(
〈LlMLm|JM〉

×
∫

dΩ DJ
ΛM(Ω)YLML(Ω)Dl∗

Λm(Ω)
)

=

√
2L+ 1
2J + 1

〈Ll0Λ|JΛ〉 (A.6)

for any M with |M | ≤ J .
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Appendix B: Variable phase approach
to multichannel scattering

We use a version of the variable phase method (see
Ref. [21] and references therein) to compute the scatter-
ing matrix. The notation is as follows: ξ is a column vec-
tor containing the radial wave functions, K is the diag-
onal matrix with the channel momenta Kmn = δmnkm.
The angular momentum quantum numbers for the differ-
ent channels are diagonal elements of the matrix L, i.e.
Lmn = δmnlm. Then the radial Schrödinger equation is
given by(

− d2

dR2
+
L(L+ 1)

R2
+W (R)−K2

)
ξ(R) = 0 (B.1)

where W (R) is the reduced potential matrix.
Let h(1)

l and h
(2)
l be Riccati-Hankel functions as de-

fined in reference [21] and H1 and H2 diagonal matri-
ces with elements H1mn(R) = δmnh

(1)
lm

(kmR)/
√
km and

H2mn(R) = δmnh
(2)
lm

(kmR)/
√
km.

The scattering matrix S(R0) obtained from equa-
tion (B.1) with W truncated at R0 (i.e. with the sub-
stitution W (R) → W (R)θ(R0 − R)) is a function of R0

and satisfies the equation

S′ =
i
2

(SH1 −H2)W (H1S −H2). (B.2)

The scattering matrix of the full problem is given by S =
S(∞).

In equation (B.2) the dependence on the angular mo-
mentum is contained in the Riccati-Hankel functions. In
numerical calculations, it can be more convenient to com-
bine the potential and the angular momentum term in one
effective potential

Weff(R) = W (R) +
L(L+ 1)

R2
· (B.3)

Following the same procedure as in the derivation of equa-
tion (B.2) one obtains

S̄′ =
i
2

(S̄H̄1 − H̄2)Weff(H̄1S̄ − H̄2) (B.4)

where H̄1(R) = K−1/2eiKR and H̄2(R) = K−1/2e−iKR.
The matrix S̄(R) is related to the scattering matrix by

S = e−iπL/2S̄(∞)e−iπL/2. (B.5)

The connection between S(R) and S̄(R) can be estab-
lished through the identity of the wave functions and their
derivatives in R. Let Ξ be a square matrix with linear
independent solutions ξ as columns. Ξ and Ξ ′ can be ex-
pressed both in terms of S and S̄

Ξ = (H1S −H2)N = (H̄1S̄ − H̄2)N̄
Ξ ′ = (H ′1S −H ′2)N = (H̄ ′1S̄ − H̄ ′2)N̄ (B.6)

where N and N̄ are square matrices. From the rela-
tions (B.6), one finds the following expression for S

S = H−1
1

(
(H̄1S̄ − H̄2)N̄N−1 +H2

)
(B.7)

with

N̄N−1 =
(
H ′1(H̄1S̄ − H̄2)−H1(H̄ ′1S̄ − H̄ ′2)

)−1

×(H1H
′
2 −H ′1H2). (B.8)

We compute the scattering matrix for the x−p + H →
x−p + H process by solving equation (B.4) in the cou-
pled basis with the boundary condition that S̄(Rmin) is a
diagonal matrix with elements

S̄mn = δmn
1 + i tan(kmRmin)
1− i tan(kmRmin)

(B.9)

which is the scattering matrix for S-wave scattering from
an infinitely hard sphere with radius Rmin. The effect
of nuclear absorption from the ns states is included by
adding the imaginary part (the real part is already taken
into account in the momentum matrix K) of the ns energy
shift to the potential

Wij(R) = 2µ
(
〈n;L′l′JM |V (R)|n;LlJM〉

+δl0δl′0(−iΓns/2)θ(R0 −R)
)
· (B.10)

The nuclear absorption is turned off for distances larger
than R0; we use R0 = 5a0 in this paper. This allows the
mixing nl ↔ ns to take place during the collision together
with the absorption effects while the ns states remain well
defined asymptotic states.

It is necessary to set the boundary condition away from
R = 0 because the potential taken in the dipole approxi-
mation has an R−2 singularity at R = 0, which makes the
Schrödinger equation ill-defined. Throughout this paper
we use the value Rmin = 0.05a0 unless otherwise stated.
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